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Abstract-The linear stability theory is used to study stability characteristics of condensate film flow 
down a vertical wall. A critical Reynolds number exists above which disturbances will be amplified. The 
magnitude of the critical Reynolds number is so small that in all technical situations a laminar gravity- 
induced, vertical condensate film is unstable. The condensation mass transfer has a stabilizing effect if the 
temperature drop across the film is constant. For locally constant heat flux across the condensate film no 

stabilizing effect of the condensation mass transfer can be found. 

C, 

c*, 

NOMENCLATURE 

c*&, complex wave velocity, celerity 
[dimensionless] ; 
c: + icT, complex waye velocity, 
celerity [dimensional] ; 
specific heat at constant pressure; 
dimensionless stream function; 
dimensionless stream function, equa- 
tion (5); 
gravitational acceleration; 
latent heat; 
thermal conductivity of liquid; 
pressure; 
p*/p& dimensionless pressure; 
Pr Re, PCclCt number; 
Prandtl number; 
rr,b/v, Reynolds number; 
temperature perturbation amplitude: 
time; 
t*u,/& dimensionless time; 
temperature; 
saturation temperature; 
wall temperature; 
T, - qe temperature drop across 
liquid film ; 

u*, v*, velocity components: 
% u*/no 
0, v*/uo 

dimensionless velocity components ; 

‘40, 

0* 9’ 
x*, Y*, 

X, 

Y> 

surface velocity of undisturbed film 
flow, [dimensional] ; 
vapor velocity; 
coordinates; 

x*/4 
Y*/d, 

dimensionless coordinates. 

Greek symbols 
LY*& wave number [dimensionless] ; 
27c/A*, wave number [dimensional] ; 
wave length [dimensional] ; 
L*/c?J wave length [dimensionless] ; 
local thickness of undisturbed con- 
densate film : 
similarity variable, equation (2); 
temperature variable, equation (7); 
kinematic viscosity, liquid; 
density, liquid; 
density, vapor; 
surface tension; 
6(1 + r), film thickness of disturbed 
film, Fig. 1; 
stream function perturbation ampli- 
tude; 
stream function, equation (5); 
temperature variable, equation (2). 
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Base flow quantities are denoted by-, disturb- 
ance quantities are denoted by ‘Y 

that in all practical condensation problems the 
film can be assumed to be unstable. 

INTRODUCTION FORMULATION OF THE PROBLEM 

THE ORIGINAL theory of gravity induced laminar 
film condensation was developed by Nusselt in 
1916 [l]. Since then, the condensation process 
has been reexamined many times. Presently, 
the most advanced theory of laminar film con- 
densation is based on the thorough investiga- 
tions carried out by Sparrow et al. [2-4]. In this 
theory, in accordance with all former theories, it 
is assumed that the condensate film is un- 
disturbed. Consequently, the film flow is taken 
to be free of waves, ripples, or other time de- 
pendent phenomena. There does not appear to 
be a predictive theory for laminar film condensa- 
tion which includes the wavy character of 
disturbed film flow. As a first step in the formula- 
tion of such a theory the stability of condensate 
films has to be examined. While to the knowledge 
of the authors the stability characteristics of 
condensate films have never been investigated, 
much research has been done on the stability 
of falling films. Benjamin [S] proved that vertical 
free-surface flow with constant flowrate is 
unstable for all Reynolds numbers. Whether a 
disturbance superimposed on the undisturbed 
flow is damped or amplified depends according 
to this theory on the wavelength of the disturb- 
ance and the surface tension of the liquid. 

The present study relates to laminar film 
condensation on a cooled, isothermal, vertical 
plate. The physical situation and some nomen- 
clature are shown in Fig. 1. The plate is suspended 
in a large volume of a pure vapor which for 

T, 

FIG. 1. Schematic ofcondensation problem. 

It is of interest to investigate whether this 
result also applies to condensate film flow down 
a vertical plate. Therefore, in this report the 
linear stability theory will be used to study the 
stability characteristics of condensate films. In 
the formulation of the problem, infinitesimal 
disturbances will be considered as amplified or 
damped in time. The wave number will be taken 
to be real and the frequency will be taken to be 
complex. The existence of a critical Reynolds 
number will be established. A condensate film 
is stable, for all Reynolds numbers small er than 
the critical Reynolds number. It will be shown 

that this critical Reynolds number is so small 

simplicity will later on be assumed to be satur- 
ated. As shown in [3,4], for undisturbed flow a 
similarity transformation of the equations ex- 
pressing conservation of mass, momentum and 
energy leads to the following ordinary differential 
equations: 

Momentum : 

f”’ + 3fJ”’ - 2f ‘2 + 1 = 0 (1) 

Energy : 

s2” + 3PrfQ’ = 0. (2) 

In equations (1) and (2)fand Sz are functions of 
r/ alone and given by 

II/ = 4% (x*)V(ro; 
T- T 

a@() = 2 
L - r, 
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with 

Assuming a negligibly small shear force acting 
on the condensate at the interface between the 
liquid and vapor, the boundary conditions to 
equations (1) and (2) are, at the wall : 

f(0) = f’(0) = 0; G?(O) = 1 (3) 

at the liquid-vapor interface : 

f"h) = 0; Qh,) = 0; 

fh) 1 c,AT __ = _L 

- j S2’(r/a) Pr 4, 
For mathematical convenience in the further 
development, the following similarity trans- 
formation is defined : 

CL Y* Y* --- Y = K (x*)’ - 6 . 

By this definition y = 0 at the wall and y = 1 
at the liquid-vapor interface. Then a dimension- 
less stream function F is introduced 

Ic/ = 4VCL hf’ha)) b*)’ F(Y) (5) 

where F(y) is a function of y alone and rla and 
f(r/) satisfy the differential equations (1) and (2). 
With this, momentum and energy equations 
become 

F”’ + r/;f’(r/& [3FF” - 2(F’)7 + &) = 0 (6) 

and 

0” + 3r/i f '(qd) Pr F8’ = 0 (7) 

where 13(y) = (T - T,)/( T, - T,) is a function of y 
alone. The boundary conditions are, at the wall: 

F(0) = F’(0) = 0; e(0) = 1 (8) 

at the liquid-vapor interface: 

F’(1) = 1; e(1) = 0. (9) 

The advantage of this transformation is that 

Fl=!Krj (10) 
t(o 

is equal to zero at the wall and equal to one at the 
liquid-vapor interface. Therefore 

U(0) = 0 and U(1) = 1 (11) 

where zlO, the velocity at the surface, is obtained 
from the solution of equation (l), 

240 = 4v C$(?/J (x*)“. 

The function U will be used as base flow in the 
stability analysis. 

A further inspection of equation (6) reveals 
that for small values of 11: f '(+,) and for r&f’(~,) 
= 2 the classical Nusselt solution is a valid 
approximation. The approximation can be 
regarded as a sufficiently accurate representa- 
tion of the undisturbed condensate film flow for 
a broad range of condensation problems. 

The physical question now asked is the follow- 
ing. Would a disturbance of frequency f,V 
superimposed on the undisturbed (base) flow 
he amplified damped, or remain neutral with 
respect to time ? Can conditions be found under 
which disturbance of arbitrary frequency are 
damped, that is, can a condensate film be stable 
at all? 

To answer this question a disturbance of the 
Tollmien-Schlichting type is considered with a 
complex celerity c = c, + ic, and the conditions 
are determined under which the disturbance is 
amplified (ci > 0), damped (Ci < 0) or remains 
unchanged (ci = 0; neutral). According to the 
linear stability theory, the instantaneous velocity 
components, temperature and pressure can be 
expressed in terms of base flow and disturbance 
quantities. 

(12) 
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All quantities in equations (12) are dimensionless 
as indicated in the nomenclature. As one usually 
does in stability studies, V is taken to be zero and 
x-derivatives of tl and B are neglected. This 
approximation is, in particular, valid when the 
base flow can be closely predicted by the Nusselt 
theory. In the following development the varia- 
tion of the fluid properties will be neglected. 
Hence, the Reynolds number Re and the P&let 
number Pe have to be evaluated at a reasonable 
reference state, for instance, at T = T, + 3 
(T, - T,) as indicated in [6]. 

Next, the disturbance is expressed by defining 
disturbance stream function and temperature 
as follows : 

$0(x, y, t) = 4(y) eiaCxWcr) (13) 

and 

6(x, y, t) = S(y) eia(x-ct) (14) 

with the understanding that the real part of the 
solution represents the physical quantity as 
shown in [7]. The disturbance velocity com- 
ponents in terms of the stream function (13) are 

and 

(15) 

Substituting equations (13)-(16) into the con- 
servation equations, the following differential 
equations are obtained : 

@’ ” - 2a2c#f’ + a44 = iaRe 

x [(E - c)(@’ - a’+) - a”~$] (17) 

and 

S” - a2S = iaPe[(C - c)S - @‘]. (18) 

In order to complete the formulation of the 
problem, it is necessary to provide the appro- 
priate boundary conditions. 

ip a v*Z +_a_ e 
0 2 p ax z40 

At the wall, perturbations of velocity com- at y = 1 f r. Ignoring terms of smaller order, 
ponents and temperature are equal to zero. the following relationship between the distur- 

Therefore : 

q5=0 (19) 
y=o &=O (20) 

s = 0. (21) 

At the film surface, the boundary conditions can 
be obtained from the equations for the kine- 
matic surface condition, the vanishing of the 
shear stress, and the continuity of normal stress 
as shown, for example, in [5]. An additional 
boundary condition can be specified by noting 
that the lihn surface is at saturation temperature 

T,. 
The kinematic surface condition is 

u(1 + r) = $ + 24(1 + 7);. 

Expressing the displacement z by 

r = d eWx-cf) 

d being the amplitude, a straightforward calcula- 
tion leads to 

4(l) = (c - l)n (22) 

where d can be taken equal to one, which can 
easily be shown. At the free surface the shear 
stress is vanishing. Hence it is 

a@ + ii) ad 
-+%=O at 

a)> 
Jf=l+Z 

which in terms of the disturbance amplitude may 
be written as 

$.‘(1)+(a2+~)~(l)=0. (23) 

The continuity in the normal stress component 
at the liquid-vapor interface yields: 
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bance characteristics is obtained 

b”‘(1) - [i&e (1 - c) + 3cr2] 4’ (1) 

The term * 2 +&2 vg 0 p ax 240 

can be evaluated by noting that the vapor 
velocity us* and the heat flux at the condensate 
surface are related by 

at y* = 6(1 + T). 

Introducing the dimensionless group 

one obtains * 2 ;&Yi! vg 0 p ax No 

= ia:@ 

i _ 

S’(l) + p!(l) s] eia(x-Cf) 

Hence equation (24) may be written as: 

4”‘(l) - a[(3a - iRe(c - l)] 4’(l) 

- 2 N,N, Rem* 4(l) 

+ iagO’ S’(1) + P(l)% 
r 

= 0 
_ 1 

where 

N, = (;)v-(g(p; “g’)-’ 

and 

2 t 

Nc = 2fV&5) ( ) 

(25) 

and therefore 
0 

&gs 
= N,N, Rem*. 

The remaining condition, that the temperature 
at the condensate surface is the saturation 
temperature can be expressed by 

e(1 + z) = 0 = Q(l) + $ r. 
0 1 

In terms of disturbance parameters this equa- 
tions reads 

S(l) + ;q 4(l) = 0. 

The equations (17) and (18) with the boundary 
conditions (19H23), (25) and (26), constitute an 
eigenvalue problem leading to functions of the 
form c = c(Re; a), and can be solved with help 
of a variety of computer-aided methods. Since 
the objective of this study is to find out whether 
there exist conditions under which a laminar, 
vertical condensate film is stable, a computer 
solution can be circumvented. 

SOLUTIONS AND RESULTS 

As stated before, the classical Nusselt solution 
is a good approximation for the description of 
laminar gravity induced, undisturbed film con- 
densation. For example, for condensing steam 
at 1 atm and q = 0.2 one finds qif’(q,) = 0.7997 
x lop3 and r(i/f’(~/,)) = 2. Therefore, the Nus- 
selt model is taken to be appropriate for the 
determination of base flow and base tempera- 
ture. Then from equation (6) and (7) it follows: 

U = 2y - y2 

e=1-y (27) 

N, = 1. 

For very small values of a the solutions of equa- 
tions (17) and (18) can be expanded in terms of 

4 = +. + a& + a2$2 + . . . 

S = So + as, + a’s, + . . (28) 

c = co + acl + a2c2 + . . . 
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Substituting equations (28) into equations (17) 
and (18) one finds along with the appropriate 
boundary conditions for the zeroth order solution 

40 = y2; cg = 2; s, = y. (29) 

With this and the boundary conditions of the 
first order equations, the following solutions 
for 4i, c1 and S, can be obtained: 

g 
- ( ) 

+f_yz Nn 
6 ( )I 8Re Re 

1 
and 

(32) 

For the purpose of this study only the celerity c 

(30) 

(31) 

is of interest. 

c=2+icc 15 
[ 

LRe-fgf. 1 (33) 

For a disturbance to be damped, the imaginary 
part of c must be negative. Therefore, it follows 
from equation (33) for every value of c1 > 0: 

hence 

Re < (gNd)* = Re,,. (34) 

Thus, it has been established that for a vertical, 
laminar condensate film a critical Reynolds 
number Re, exists, above which some dis- 
turbances will be amplified. The value of this 
critical Reynolds number is a function of thermo- 
dynamic properties of liquid and vapor as well 
as the temperature drop across the condensate 
film. 

It is of interest to solve equation (24) for the 
distance x = x, up to which a laminar con- 

densate film can be considered to be stable. 

Re = !!!!! 
V 

5p 1cAT 

-( 1 
_P. 

8 pg I+ h,, 

From this it follows that 

An inspection of equation (35) reveals that for all 
practical situations the distance from the leading 
edge to x = x, is negligibly small. For instance, 
for saturated steam at atmospheric pressure, 
condensing at a vertical wall this distance is 
about 1.7 x 10e4 m for AT= T, - T, = 2°C 
and about 5 x lop4 m for a temperature drop 
of AT = 50°C. Consequently one has to assume 
that in every practical condensation process 
waves may be present because some disturbance 
will be amplified. 

G-heat flux 

FIG. 2. Condensation at constant AT. 

Although the critical Reynolds number Re, 
is of no practical value, it indicates a stabilizing 
effect of the condensation mass transfer on the 
film flow. The result Ret, > 0 has been found 
assuming constant temperatures at the wall and 
the liquid-vapor interface. At a constant tem- 
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perature drop across the condensate film the 
local transfer rates and therefore the local 
mass-transfer rates are higher for negative 
values of T than for positive values, as indicated 
in Fig. 2. Therefore the condensation rate is so 
distributed along x that the wavy film surface 
is smoothed out 

c s- 

q=heat flux 

FIG. 3. Condensation at locally constant heat flux. 

If a constant local heat flux across the film is 
assumed, which is tantamount to assuming zero 
heat flux disturbance at the wall, then equation 
(21) must be replaced by 

S’(0) = 0. 

The celerity c for this case becomes 

c = 2 + ia&Re (36) 

and the critical Reynolds number for every 
positive c( is equal to zero. There is apparently 

no stabilizing effect of the condensation mass 
transfer on the film flow. The reason for this 
result is that for a constant local heat flux the 
local condensation rate is constant and does not 
depend on the value of z as shown in Fig. 3. 
Therefore, at the troughs as much vapor con- 
denses as at the crest which does not alter the 
wavy film surface. For this case, the condensate 
film behaves like a falling film with constant mass 
flow rate. 

Since (for physical reasons) a constant tem- 
perature drop across the film is more likely than 
a locally constant condensation rate, there will 
be a stabilizing effect of the mass transfer on the 
condensate film. The intensive study of this effect 
will be the subject of future research. 
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STABILITE DE L’ECOULEMENT D’UN CONDENSAT DESCENDANT LE LONG 
D’UNE PAR01 VERTICALE 

R&m&~ On utilize une thtorie de la stabilitk lintaire afin d’Ctudier les CaractCristiques de stabilitk de 
I’Ccoulement en film d’un condensat le long d’une paroi verticale. 11 existe un nombre critique de Reynolds 
au-dessus duquel les perturbations sont ampli%es. La grandeur de ce nombre critique de Reynolds est si 
petite que dans toutes les situations techniques, un mouvement laminaire par gravite &ant induit. le 
film vertical condens est instable. Le transfert massique par condensation a une effet stabilisateur si 
l’abaissement de temperature au travers du film est constant. Pour un flux thermique local constant au 
travers du film condenst on ne peut trouver aucun effet stabilisateur du transfert massique par 

condensation. 
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DIE STABILITAT EINER KONDENSATSTROMUNG AN EINER VERTIKALEN WAND 

Zusammenfasslmg Die lineare Stabilitatstheorie wird ftir die Untersuchung des Stabilitatsverhaltens 
eines Kondensatlilms herangezogen, der an einer senkrechten Wand herabstromt. Es existiert eine kritische 
Reynolds-Zahl,jenseits derdie .C&rungeu verstlrkt werden. 

Diese Kritische Revnolds-Zahl ist so klein. dass in allen technischen Flllen der laminare. durch die 
Schwerkraft bedingte: vertilcale Kondensatfihn instabil ist. Der Stofftransport durch Kondensation hat 
stabilisiderende Wirkung, wenn der Temperaturabfall im Film konstant ist. Bei iirtlich konstanter Warme- 
stromdichte durch den Kondensatfilm konnte keine stabilisierende Wirkung des Stofftransportes gefunden 

werden. 

&‘CTOHrIHBOCTb IIOTOHA KOHflEHCiZTA HE BEPTMHAJIbHOH 
CTEHKE 

&irroTaqnSr-B CTaTbe LlCCJIeAyIOTCR XapaKTepLlCTPlKI4 IlOTOKa IIJIeHKll KOHAeHCaTa Ha 

BepTHKanbHOfl CTeHKe Ha OCHOBe JIMH&HOfi TeOpIfM yCTOtiYIlBOCTI4. nOCKOJIbKy BeJIllYMHa 

Kp&lTH‘IBCKO~O YI4CJIa P&HOJIb?JCa MaJIa, TO IIpaKTWIeCKH BO BCeX TeXHMqt'CKHX CMTyaIJMRX 

JIaMAHapHaR BepTMKaJIbHaR IIJIeHKa KOHAeHCaTa, 06pa3yIOUaHCR IIOJI Ae!&TBAeM CAJIbI 

TFI)fCeCTR, RBJIReTCR HeCTa6HJIbHOft. nOKa3bIBaeTCH, YTO KOHAeHCaItGlOHHbIti MaCCOO6MeH 

OKaabIBaeT cTa6ms3apyroqee BJIIUIHMe B cnyqae IIOCTORHHOI-0 nepenaga TeMIIepaTyp II0 

IIIElpHHe IIJIeHKPl. &IH IIOCTORHHOrO ,?OIEaJIbHOrO TeIIJIOBOI-0 IIOTOKa II0 LIIPlpI4He IIJIeHKl4 He 

06HapyHieHO CTa6IUIM3~lpyIOIIJWO BJIllHHGlR KOH~7eHCaI~l4OHHO~O MaCCOO%MeHa. 


