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Abstract—The linear stability theory is used to study stability characteristics of condensate film flow

down a vertical wall. A critical Reynolds number exists above which disturbances will be amplified. The

magnitude of the critical Reynolds number is so small that in all technical situations a laminar gravity-

induced, vertical condensate film is unstable. The condensation mass transfer has a stabilizing effect if the

temperature drop across the film is constant. For locally constant heat flux across the condensate film no
stabilizing effect of the condensation mass transfer can be found.

NOMENCLATURE

c*/u,, complex wave velocity, celerity
[dimensionless];

¢f + ic¥, complex waye velocity,
celerity [ dimensional];

specific heat at constant pressure;
dimensionless stream function;
dimensionless stream function, equa-
tion (5);

gravitational acceleration;

latent heat;

thermal conductivity of liquid;
pressure;

p*/pu3, dimensionless pressure;

Pr Re, Péclét number;

Prandtl number;

1,0/v, Reynolds number;

temperature perturbation amplitude:
time;

t*u,/6, dimensionless time;
temperature;

saturation temperature;

wall temperature;

T, — T,, temperature drop across
liquid film;

u*, v*, velocity components;

u, u*fu,
v, U*/uo

dimensionless velocity components ;

41

ty, surface velocity of undisturbed film
flow, [ dimensional};
vx, vapor velocity;
x*, y*, coordinates;
%
X x*/ 6’} dimensionless coordinates.
¥, y*/o,
Greek symbols
o, a*d, wave number [dimensionless];
a¥, 27m/A*, wave number [dimensional];
¥, wave length [dimensional];
2 A*/6 wave length [dimensionless] ;
9, local thickness of undisturbed con-
densate film:
", similarity variable, equation (2);
0, temperature variable, equation (7);
v, kinematic viscosity, liquid;
0, density, liquid;
Py density, vapor;
o, surface tension;
&, o(1 + 1), film thickness of disturbed
film, Fig. 1;
o, stream function perturbation ampli-
tude;
¥, stream function, equation (5);
Q, temperature variable, equation (2).
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Base flow quantities are denoted by, disturb-
ance quantities are denoted by "

INTRODUCTION

THE ORIGINAL theory of gravity induced laminar
film condensation was developed by Nusselt in
1916 [1]. Since then, the condensation process
has been reexamined many times. Presently,
the most advanced theory of laminar film con-
densation is based on the thorough investiga-
tions carried out by Sparrow et al. [2-4]. In this
theory, in accordance with all former theories, it
is assumed that the condensate film is un-
disturbed. Consequently, the film flow is taken
to be free of waves, ripples, or other time de-
pendent phenomena. There does not appear to
be a predictive theory for laminar film condensa-
tion which includes the wavy character of
disturbed film flow. As a first step in the formula-
tion of such a theory the stability of condensate
films has to be examined. While to the knowledge
of the authors the stability characteristics of
condensate films have never been investigated,
much research has been done on the stability
of falling films. Benjamin [ 5] proved that vertical
free-surface flow with constant flowrate is
unstable for all Reynolds numbers. Whether a
disturbance superimposed on the undisturbed
flow is damped or amplified depends according
to this theory on the wavelength of the disturb-
ance and the surface tension of the liquid.

It is of interest to investigate whether this
result also applies to condensate film flow down
a vertical plate. Therefore, in this report the
linear stability theory will be used to study the
stability characteristics of condensate films. In
the formulation of the problem, infinitesimal
disturbances will be considered as amplified or
damped in time. The wave number will be taken
to be real and the frequency will be taken to be
complex. The existence of a critical Reynolds
number will be established. A condensate film
is stable, for all Reynolds numbers small er than
the critical Reynolds number. It will be shown
that this critical Reynolds number is so small

that in all practical condensation problems the
film can be assumed to be unstable.

FORMULATION OF THE PROBLEM

The present study relates to laminar film
condensation on a cooled, isothermal, vertical
plate. The physical situation and some nomen-
clature are shown in Fig. 1. The plate is suspended
in a large volume of a pure vapor which for
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FiG. 1. Schematic of condensation problem.

simplicity will later on be assumed to be satur-
ated. As shown in [3, 4], for undisturbed flow a
similarity transformation of the equations ex-
pressing conservation of mass, momentum and
energy leads to the following ordinary differential
equations:

Momentum:
3T =2f7+1=0 0}
Energy:
Q'+ 3PrfQ2 =0. (2
In equations (1) and (2) f and Q are functions of
# alone and given by
T-T,

s

T, — T,

w s

Y= dve, (P (), Q) =
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with

_oy*
(M

i glp — p) It
(’L - 4v2p = .

Assuming a negligibly small shear force acting
on the condensate at the interface between the
liquid and vapor, the boundary conditions to
equations (1) and (2) are, at the wall:

H

fO =710)=0;, Q0)=1 3)
at the liquid—vapor interface:
f'ns) =0 Qns) = 0;

fns) _ i C, AT

-3 = .
Qns)  Pr hy,

For mathematical convenience in the further
development, the following similarity trans-
formation is defined:

a Yyt

= e T 8 @

By this definition y = 0 at the wall and y = 1
at the liquid—vapor interface. Then a dimension-
less stream function F is introduced

¥ = dvey (11(15) (x*)* F(y) (5)

where F(y) is a function of y alone and y, and
f(n) satisfy the differential equations (1) and (2).
With this, momentum and energy equations
become

2
1a

Yy " — 2(F')?
F" 4 f ) [3FF" = 2] + 0

-0 (6)

and
0" + 32 f'(n,) PrFe =0 (7

where 0(y) = (T — T)AT, — T,)isa function of y
alone. The boundary conditions are, at the wall:

F) = F'(0) = 0; #0) = 1 (8)
at the liquid—vapor interface:

F()=1; 6(1)=0. 9)

The advantage of this transformation is that

*
u _
F’:——:u

(10)

is equal to zero at the wall and equal to one at the
liquid-vapor interface. Therefore

#0) = 0 aly=1 (11

and

where u,, the velocity at the surface, is obtained
from the solution of equation (1),

uy = 4v ct f'ln,) (x*)2.

The function & will be used as base flow in the
stability analysis.

A further inspection of equation (6) reveals
that for small values of %2 f (1) and for 13/ (i;)
= 2 the classical Nusselt solution is a valid
approximation. The approximation can be
regarded as a sufficiently accurate representa-
tion of the undisturbed condensate film flow for
a broad range of condensation problems.

The physical question now asked is the follow-
ing. Would a disturbance of frequency f,,
superimposed on the undisturbed (base) flow
be amplified, damped, or remain neutral with
respect to time ? Can conditions be found under
which disturbance of arbitrary frequency are
damped, that is, can a condensate film be stable
at all?

To answer this question a disturbance of the
Tollmien—-Schlichting type is considered with a
complex celerity ¢ = ¢, + ic;, and the conditions
are determined under which the disturbance is
amplified (c¢; > 0), damped (c; < 0) or remains
unchanged (c¢; = 0; neutral). According to the
linear stability theory, the instantaneous velocity
components, temperature and pressure can be
expressed in terms of base flow and disturbance
quantities.

u = u(y) + it(x, y, r)

v = ﬁ(y) + f"(xa Vs t)
p = By) +p(x. 3, 1) (12)

6 = 0(y) +8(x, y,1).
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All quantities in equations (12) are dimensionless
as indicated in the nomenclature. As one usually
does in stability studies, & is taken to be zero and
x-derivatives of # and § are neglected. This
approximation is, in particular, valid when the
base flow can be closely predicted by the Nusselt
theory. In the following development the varia-
tion of the fluid properties will be neglected.
Hence, the Reynolds number Re and the Péclét
number Pe have to be evaluated at a reasonable
reference state, for instance, at T =T, +3
(T, — T,) as indicated in [6].

Next, the disturbance is expressed by defining
disturbance stream function and temperature
as follows:

P(x,p, 1) = p(y) e~ (13)
and
B(x, y, 1) = S(y) e*x—e (14)

with the understanding that the real part of the
solution represents the physical quantity as
shown in [7]. The disturbance velocity com-
ponents in terms of the stream function (13) are

a — %‘k — ¢/(y) eim(x—ct) (15)
y
and
N % _ . ) ia(x—ct)
V= o iag(y) e . (16)

Substituting equations (13}-(16) into the con-
servation equations, the following differential
equations are obtained:

¢NN _ 2a2¢// +a4¢ — i(ZRe

x [ — c)(¢" — o) — u"'¢] 17

and

S” — a*S = iaPe[(@ — c)S — ¢0].  (18)
In order to complete the formulation of the
problem, it is necessary to provide the appro-
priate boundary conditions.

At the wall, perturbations of velocity com-
ponents and temperature are equal to zero.

Therefore:
¢ =0 (19)
y=0 ¢ =0 (20)
S=0 (21)

At the film surface, the boundary conditions can
be obtained from the equations for the kine-
matic surface condition, the vanishing of the
shear stress, and the continuity of normal stress
as shown, for example, in [S]. An additional
boundary condition can be specified by noting
that the film surface is at saturation temperature
T,

The kinematic surface condition is
ot ot
1 =— 1 —
(1l + 1) 8t+u( +r)ax
Expressing the displacement 7 by
T = deia(x—ct)

d being the amplitude, a straightforward calcula-
tion leads to

¢(1) = (c — 1

where d can be taken equal to one, which can

easily be shown. At the free surface the shear

stress is vanishing. Hence it is

0@+ ua) 0b

—=0 t

oy + Ox a

which in terms of the disturbance amplitude may
be written as

(22)

y=1+4r1

WM+<M+§£»MH=Q

~ 23)

The continuity in the normal stress component
at the liquid—vapor interface yields:

o1l &

)2 (%)
0x) Re\dx?) pukdox®

+1&2_£Y
2 p Ox\1,

at y = 1 + 7. Ignoring terms of smaller order,
the following relationship between the distur-
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bance characteristics is obtained

¢"'(1) — [iaRe (1 — ¢) + 302] ¢’ (1)

5 ¢(1)
— R
pu3d el c—1
*\ 2
_ lRe Py 0 (U_g> o latx—ct) (24)
@x Ug
The term
1 p, 0 [vF\?
—~Re 22
2 ¢ p 6x(uo>

can be evaluated by noting that the vapor

velocity v} and the heat flux at the condensate

surface are related by

- k(§1>; at y* =61+ 1)

pgv:hfy = oy*

Introducing the dimensionless group

Nd = 1 ¢, AT) )
Pr hy, Py
one obtains

1 p, 0 v;")z . Nd
ZRePf [ 22Y — i 2011
2Rep 5x(uo mReG()

[S(l) + 6// d)( ) ] m(x—-ct).

Hence equation (24) may be written as:

¢"" (1) — a[ (3 — iRe(c — 1)] ¢'(1)
- _wi_ NN, Re ¥ ¢(1)
c—1

+ iocl—v—dg’(l)[ (1) + 8"(1 ) o(1 )_J =0 (25)
Re 1
where
_o (90 — p)\?
ve= () (%5
and

(3 >*
Ne = <2f’('1.s)

and therefore
o

—— = N,N_Re™*

pud ¢

The remaining condition, that the temperature
at the condensate surface is the saturation
temperature can be expressed by

9(1+r)=0=9(1)+<@\) T
9y /4
In terms of disturbance parameters this equa-

tions reads
o' (1
S(1) + (W
c—1

#(1) = 0. (26)
The equations (17) and (18) with the boundary
conditions (19)23), (25) and (26), constitute an
eigenvalue problem leading to functions of the
form ¢ = ¢(Re; o), and can be solved with help
of a variety of computer-aided methods. Since
the objective of this study is to find out whether
there exist conditions under which a laminar,
vertical condensate film is stable, a computer
solution can be circumvented.

SOLUTIONS AND RESULTS

As stated before, the classical Nusselt solution
is a good approximation for the description of
laminar gravity induced, undisturbed film con-
densation. For example, for condensing steam
at 1 atm and n = 02 one finds #n;f"(,) = 0-7997
x 1073 and #}/f'(n,) = 2. Therefore, the Nus-
selt model is taken to be appropriate for the
determination of base flow and base tempera-
ture. Then from equation (6) and (7) it follows:

#=2y—y
O=1-y 27)
N, =1

For very small values of « the solutions of equa-
tions (17) and (18) can be expanded in terms of
¢ = o + ady +a’d, +
S =S8, +aS, +a%S, + (28)

c =cy +ac; +a’c, +...
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Substituting equations (28) into equations (17)
and (18), one finds along with the appropriate
boundary conditions for the zeroth order solution

bo = ¥*; (29)
With this and the boundary conditions of the

first order equations, the following solutions
for ¢, ¢, and S; can be obtained:

5 4 3
. y Y y Nd
=4 —_— = —_—
¢ ’Re[lzo 24 T 24Re (Re)

o = 2; Sy =y

2 2

vy Ni)

6 8Re<Re jl (30)

8 1 Nd
c“’LsRe_iEé} 31

and

For the purpose of this study only the celerity ¢
is of interest.

c=2+ia[iRe—1M] (33)

15 3Re|

For a disturbance to be damped, the imaginary
part of ¢ must be negative. Therefore, it follows
from equation (33) for every value of « > 0:

hence
Re < 3Nd)t = Re,,. (39

Thus, it has been established that for a vertical,
laminar condensate film a critical Reynolds
number Re, exists, above which some dis-
turbances will be amplified. The value of this
critical Reynolds number is a function of thermo-
dynamic properties of liquid and vapor as well
as the temperature drop across the condensate
film.

It is of interest to solve equation (24) for the
distance x = x, up to which a laminar con-

densate film can be considered to be stable.

o0

v

-2 i)i iCPATY o
4v?) \Pr hg,

_5p ch,AT)
8 p,\Pr hy, /)

From this it follows that

211 ¢, AT
X":’/ i—p—v> 11g . (35)
| \16 p, gPr hg,

An inspection of equation (35) reveals that for all
practical situations the distance from the leading
edge to x = x,, is negligibly small. For instance,
for saturated steam at atmospheric pressure,
condensing at a vertical wall this distance is
about 177 x 10™* m for AT=T,— T, = 2°C
and about 5 x 10™* m for a temperature drop
of AT = 50°C. Consequently one has to assume
that in every practical condensation process
waves may be present because some disturbance
will be amplified.

g \
l .
\ —Q<Qq,
L |
] Jp— o
T e,
7 /
1 /
‘ . -
] o g>q,
g \
\\l g=heat flux
AN

F1G. 2. Condensation at constant AT.

Although the critical Reynolds number Re,
is of no practical value, it indicates a stabilizing
effect of the condensation mass transfer on the
film flow. The result Re, > 0 has been found
assuming constant temperatures at the wall and
the liquid-vapor interface. At a constant tem-
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perature drop across the condensate film the
local transfer rates and therefore the local
mass-transfer rates are higher for negative
values of 7 than for positive values, as indicated
in Fig. 2. Therefore the condensation rate is so
distributed along x that the wavy film surface
is smoothed out.

e 4§ I
/

— - — qJ

/
| ’ .

laefi—— J = q;

\
g \
] \
1 g=heat flux

FiG. 3. Condensation at locally constant heat flux.

If a constant local heat flux across the film is
assumed, which is tantamount to assuming zero
heat flux disturbance at the wall, then equation
(21) must be replaced by

S0 =0
The celerity ¢ for this case becomes
¢ =2+ inRe (36)

and the critical Reynolds number for every
positive o is equal to zero. There is apparently

no stabilizing effect of the condensation mass
transfer on the film flow. The reason for this
result 1s that for a constant local heat flux the
local condensation rate is constant and does not
depend on the value of ¢ as shown in Fig 3.
Therefore, at the troughs as much vapor con-
denses as at the crest which does not alter the
wavy film surface. For this case, the condensate
film behaves like a falling film with constant mass
flow rate.

Since (for physical reasons) a constant tem-
perature drop across the film is more likely than
a locally constant condensation rate, there will
be a stabilizing effect of the mass transfer on the
condensate film. The intensive study of this effect
will be the subject of future research.
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STABILITE DE L’ECOULEMENT D’UN CONDENSAT DESCENDANT LE LONG
D’UNE PAROI VERTICALE

Résumé-— On utilise une théorie de la stabilité linéaire afin d’étudier les caractéristiques de stabilité de
I'écoulement en film d’un condensat le long d’une paroi verticale. Il existe un nombre critique de Reynolds
au-dessus duquel les perturbations sont amplifiées. La grandeur de ce nombre critique de Reynolds est si
petite que dans toutes les situations techniques. un mouvement laminaire par gravité étant induit. le
film vertical condensé est instable. Le transfert massique par condensation a une effet stabilisateur si
I’abaissement de température au travers du film est constant. Pour un flux thermique local constant au
travers du film condensé on ne peut trouver aucun effet stabilisateur du transfert massique par
condensation.
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DIE STABILITAT EINER KONDENSATSTROMUNG AN EINER VERTIKALEN WAND

Zusammenfassung— Die lineare Stabilititstheorie wird fir die Untersuchung des Stabilititsverhaltens
eines Kondensatfilms herangezogen, der an einer senkrechten Wand herabstromt. Es existiert eine kritische
Reynolds-Zahl, jenseits der die Storungen verstirkt werden.

Diese Kritische Reynolds-Zahl ist so klein, dass in allen technischen Fillen der laminare, durch die
Schwerkraft bedingte, vertikale Kondensatfilm instabil ist. Der Stofftransport durch Kondensation hat
stabilisiderende Wirkung, wenn der Temperaturabfall im Film konstant ist. Bei 6rtlich konstanter Wirme-
stromdichte durch den Kondensatfilm konnte keine stabilisierende Wirkung des Stofftransportes gefunden

werden.

VCTONYHUBOCTB [IOTOKA KOHJAEHCATA HE BEPTUKAJbBHON
CTEHRE

AnHorauua—EB crarbe UCCIEAYIOTCA XAPAKTEPMCTUKU MOTOKA TIJIEHKHW KOHJEHCATd Ha
BEPTUKAJbHON CTEHKe HA OCHOBe JIMHEMHON Teopuu ycroivuuBocTu. IloCKONBKY BenuuuHa
Kputuveckoro uucia PeilHonbaca maga, TO NPAaKTUYeCKH BO BCeX TEXHHYECKUX CUTYALUAX
JAMUHAPHAA BePTUKAJbHAA IMUJIEHKA KOHIeHcaTa, o0pasyloWanacsad TNOL AeHCTBUEM CHJILL
TAMECTH, ABJIAETCA HeCTabuiabHONH. IlokasblBaeTcA, 4TO KOHIEHCAUMOHHBIA MaccooOMeH
OKAa3bIBAET CTAOMIN3KUpYIOIee BIMAHME B CJayyae IOCTOAHHOIO Mepenajga TeMIeparyp Ino
[MUpHUHE TIeHKH. A MOCTOAHHOTO JI0KAJbHOTO TEIJIOBOTO MOTOKA MO LIHMpUHE TUIEHKU He
00HAPYKEHO cTAGHINBHPYIONIEr0 BIUAHUA KOHJICHCAIMOHHOTO MaccoolMena.



